Stability of equilibrium under constraints: role of second-order constrained derivatives
نویسندگان
چکیده
منابع مشابه
On the stability of linear differential equations of second order
The aim of this paper is to investigate the Hyers-Ulam stability of the linear differential equation$$y''(x)+alpha y'(x)+beta y(x)=f(x)$$in general case, where $yin C^2[a,b],$ $fin C[a,b]$ and $-infty
متن کاملSecond-Order Optimality Conditions for Mathematical Programs with Equilibrium Constraints
We study second-order optimality conditions for mathematical programs with equilibrium constraints (MPEC). Firstly, we improve some second-order optimality conditions for standard nonlinear programming problems using some newly discovered constraint qualifications in the literature, and apply them to MPEC. Then, we introduce some MPEC variants of these new constraint qualifications, which are a...
متن کاملStability analysis of stochastic programs with second order dominance constraints
In this paper we present stability analysis of a stochastic optimization problem with stochastic second order dominance constraints. We consider perturbation of the underlying probability measure in the space of regular measures equipped with pseudometric discrepancy distance ( [36]). By exploiting a result on error bound in semi-infinite programming due to Gugat [14], we show under the Slater ...
متن کاملSensitivity Analysis of Optimization Problems Under Second Order Regular Constraints
We present a perturbation theory for nite dimensional optimization problems subject to abstract constraints satisfying a second order regularity condition. We derive Lipschitz and HH older expansions of approximate optimal solutions, under a directional constraint qualiication hypothesis and various second order suucient conditions that take into account the curvature of the set deening the con...
متن کاملSecond Order Necessary and Sufficient Optimality Conditions under Abstract Constraints
In this paper we discuss second order optimality conditions in optimization problems subject to abstract constraints. Our analysis is based on various concepts of second order tangent sets and parametric duality. We introduce a condition, called second order regularity, under which there is no gap between the corresponding second order necessary and second order suucient conditions. We show tha...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Physics A: Mathematical and Theoretical
سال: 2010
ISSN: 1751-8113,1751-8121
DOI: 10.1088/1751-8113/43/42/425208